Skip to content

Claude Code Skill

The cyberian-control skill enables Claude Code sessions to control and coordinate multiple AI agent instances.

Overview

The cyberian-control skill provides comprehensive knowledge about using cyberian's CLI to orchestrate multi-agent workflows. When installed, Claude can automatically use this skill when working on tasks involving:

  • Multi-agent coordination
  • Delegating tasks to remote agents
  • Managing agent farms
  • Running complex workflows
  • Parallel agent execution

Installation

In Claude Code, run:

/plugin marketplace add cyberian-skills

Then browse and install the cyberian-control plugin.

Method 2: Copy to Project

Copy the skill to your project's skills directory:

cp -r cyberian-control /path/to/your/project/.claude/skills/

What the Skill Provides

The skill teaches Claude how to:

1. Send Messages to Agents

# Fire-and-forget
cyberian message "Your task here" -P 3284

# Wait for completion
cyberian message "Your task here" --sync -P 3284

2. Manage Agent Servers

# Start an agent
cyberian server claude -p 3284 -d /tmp/workdir

# Check status
cyberian status -P 3284

# Stop an agent
cyberian stop -p 3284

3. Run Agent Farms

# farm.yaml
base_port: 4000
servers:
  - name: researcher
    agent_type: claude
    directory: /tmp/researcher
    skip_permissions: true

  - name: coder
    agent_type: claude
    directory: /tmp/coder
    skip_permissions: true
cyberian farm start farm.yaml

4. Execute Workflows

# workflow.yaml
name: research-task
description: Multi-step research

params:
  query:
    range: string
    required: true

subtasks:
  gather:
    instructions: |
      Research {{query}}. Save to RESEARCH.md.
      COMPLETION_STATUS: COMPLETE

  analyze:
    instructions: |
      Analyze RESEARCH.md. Create ANALYSIS.md.
      COMPLETION_STATUS: COMPLETE
cyberian run workflow.yaml -p query="topic" -d ./output

Use Cases

1. Parallel Research

Have multiple agents research different aspects of a topic simultaneously:

# Start farm
cyberian farm start research-farm.yaml

# Send different topics to each
cyberian message "Research history of X" -P 5000 &
cyberian message "Research current state of X" -P 5001 &
cyberian message "Research future of X" -P 5002 &
wait

# Collect results
cyberian messages -f yaml -P 5000 > history.yaml
cyberian messages -f yaml -P 5001 > current.yaml
cyberian messages -f yaml -P 5002 > future.yaml

2. Delegated Development

Delegate different parts of a project to specialized agents:

# Agent 1: Backend
cyberian message "Implement backend API" -P 4000 --sync

# Agent 2: Frontend
cyberian message "Implement frontend UI" -P 4001 --sync

# Agent 3: Tests
cyberian message "Write tests for backend and frontend" -P 4002 --sync

3. Iterative Refinement

Use workflows with looping for iterative improvement:

subtasks:
  refine:
    instructions: |
      Improve the solution. When perfect: REFINEMENT_COMPLETE
    loop_until:
      status: REFINEMENT_COMPLETE

4. Hybrid Workflows

Combine providers (for data) with agents (for synthesis):

subtasks:
  gather:
    provider_call:
      provider: deep-research-client
      method: research
      params:
        query: "{{query}}"
      output_file: "data.md"

  synthesize:
    instructions: |
      Read data.md and create report.
      COMPLETION_STATUS: COMPLETE

Examples

The skill includes several examples in cyberian-control/examples/:

Shell Scripts

  • simple-delegation.sh - Delegate single task to agent
  • parallel-research.sh - Run parallel research across agents
  • monitor-farm.sh - Monitor agent farm in real-time

Workflow Files

  • multi-agent-research.yaml - Coordinated multi-perspective research
  • delegated-coding.yaml - Multi-agent software development
  • farm-config.yaml - Example farm configuration

How Claude Uses the Skill

When you ask Claude to coordinate multiple agents or run complex multi-agent workflows, Claude will:

  1. Invoke the skill - Load the cyberian-control knowledge
  2. Plan the coordination - Design the multi-agent approach
  3. Execute commands - Use cyberian CLI via Bash tool
  4. Monitor progress - Check agent status and retrieve results
  5. Synthesize results - Combine outputs from multiple agents

Best Practices

The skill teaches Claude these best practices:

  1. Always specify ports when working with multiple agents
  2. Use --sync mode when you need to wait for completion
  3. Set appropriate timeouts for complex tasks
  4. Monitor agent status before sending new tasks
  5. Use farm template directories to share configuration
  6. Clean up servers when done

Skill Architecture

cyberian-control/
├── SKILL.md              # Main skill (loaded by Claude)
├── README.md             # Installation & overview
└── examples/
    ├── README.md         # Example documentation
    ├── *.sh              # Shell script examples
    └── *.yaml            # Workflow examples

The SKILL.md file contains the complete knowledge that Claude loads, including:

  • When to use the skill
  • Complete command reference
  • Common patterns
  • Workflow system
  • Best practices
  • Troubleshooting

Testing

The skill includes comprehensive tests:

uv run pytest tests/test_skill.py -v

Tests verify: - Marketplace configuration - Skill structure and metadata - Example files validity - Documentation completeness

Resources

Publishing the Skill

To make the skill available to others:

  1. Ensure repo is public on GitHub
  2. Users install via marketplace:

    /plugin marketplace add owner/repo-name
    

  3. Or via local path during development:

    /plugin marketplace add /path/to/cyberian/.claude-plugin/marketplace.json
    

Users will then be able to browse and install the cyberian-control skill from the plugin marketplace.

Advanced Usage

Custom Farm Configurations

Create specialized farms for different use cases:

# ml-research-farm.yaml
base_port: 6000
servers:
  - name: data-scientist
    agent_type: claude
    directory: /tmp/data-sci
    template_directory: ./templates/data-science

  - name: ml-engineer
    agent_type: claude
    directory: /tmp/ml-eng
    template_directory: ./templates/ml-engineering

  - name: researcher
    agent_type: claude
    directory: /tmp/researcher
    template_directory: ./templates/research

Template Directories

Share configuration across farm agents:

# Create template
mkdir -p templates/researcher/.claude
cat > templates/researcher/.claude/CLAUDE.md << 'EOF'
# Research Agent
- Focus on comprehensive information gathering
- Cite sources
- Be thorough and analytical
EOF

# Farm config references it
# template_directory: ./templates/researcher

Complex Workflows

Build multi-stage workflows with dependencies:

name: complex-project
description: Multi-stage development workflow

params:
  feature:
    range: string
    required: true

subtasks:
  design:
    instructions: |
      Design {{feature}}. Create DESIGN.md.
      COMPLETION_STATUS: COMPLETE

  implement_backend:
    instructions: |
      Read DESIGN.md. Implement backend.
      COMPLETION_STATUS: COMPLETE

  implement_frontend:
    instructions: |
      Read DESIGN.md. Implement frontend.
      COMPLETION_STATUS: COMPLETE

  test:
    instructions: |
      Write tests for backend and frontend.
      COMPLETION_STATUS: COMPLETE

  document:
    instructions: |
      Create comprehensive documentation.
      COMPLETION_STATUS: COMPLETE

Troubleshooting

Skill Not Loading

Verify installation:

/plugin
# Select "Manage and uninstall plugins"
# Check if cyberian-control is listed

Commands Not Working

Ensure cyberian CLI is installed:

pip install cyberian
# or
uvx cyberian --help

Agent Not Responding

Check and restart:

cyberian status -P 3284
cyberian stop -p 3284
cyberian server claude -p 3284 -d /tmp/workdir

Future Enhancements

Potential future additions to the skill:

  • More workflow examples for specific domains
  • Integration with additional agent types
  • Advanced coordination patterns
  • Performance optimization examples
  • Multi-machine deployment examples

Contributing

To contribute to the skill:

  1. Fork the cyberian repository
  2. Modify files in cyberian-control/
  3. Add tests in tests/test_skill.py
  4. Submit pull request

Contributions welcome for: - New example workflows - Additional patterns - Documentation improvements - Bug fixes